If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+40n+60=0
a = 1; b = 40; c = +60;
Δ = b2-4ac
Δ = 402-4·1·60
Δ = 1360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1360}=\sqrt{16*85}=\sqrt{16}*\sqrt{85}=4\sqrt{85}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-4\sqrt{85}}{2*1}=\frac{-40-4\sqrt{85}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+4\sqrt{85}}{2*1}=\frac{-40+4\sqrt{85}}{2} $
| 16x=x+16 | | (1.07)*x+0.2*(1.07)x=41 | | 2.4+x=19.3 | | X(5-2x)+15=0 | | 8x-3=2x+0 | | 1×(3x-10)=3x-10 | | 3(2x-1)=2x+35 | | x+0.07x+0.07(x+0.07x)=21 | | 75+2a=40+2,1a | | 75+2a=40+2,1 | | x/3+4=-3x+2 | | x+0.07x+0.15(x+0.07x)=25 | | 3t^2-6t-10=10 | | ((x-100)/x)*100=150 | | 1/7x+2=1 | | x+0.07x+0.15(x+0.07*x)=25 | | ½x+4=20 | | (2x-5)/7=(3x-6)/4 | | x=1.5x+100 | | -0.5x+9.5=0x+5 | | x+0.07+0.15(x+0.07)=25 | | 21-6×=9(3-x) | | -48.3=9.00x | | x+0.07+0.20(x+0.07)=21 | | 2x-5/5=3x-6/4 | | 5(2x-6)=11(x-3) | | m6=21m4 | | 8p-40=50+3p | | -5000x^2-1000x+12.5=0 | | x=141/73 | | x=-141 | | -7+x=-4(x-7) |